Nitrate leaching losses from a recently developed intensive horticultural system in a previously disadvantaged region R.B. Thompson¹, M.R. Granados², J.C. Gazquez², J.S. Rodríguez-López¹, M.D. Fernandez², M.G. Gallardo¹, C. Martínez-Gaitan¹, C. Gimenez³ ¹Dpto. Producción Vegetal, Universidad de Almería, 04120 La Cañada, Almería, Spain. ²Cajamar Estación Experimental "Las Palmerillas", Apdo. 250, 04080 Almería, Spain. ³Dpto. Agronomía, Universidad de Córdoba, 14080 Córdoba, Spain # Background Greenhouse-based vegetable production in Almeria, Spain - 27,000 ha simple plastic greenhouses; 10,000 ha more in adjoining provinces - 80% cropping in soil; 20% in "open" hydroponic systems - System has developed in last 30 years; responsible for local economic miracle - Was very poor region; now has highest per capita income in Spain - Aquifers have massive nitrate contamination (see Fig 1) - Considerable interest in copying this system in numerous other countries # Objectives - To measure and characterise NO₃- leaching from this system from: - (a) "open" hydroponic crops, and - (b) cropping sequences in soil Fig. 1 NO₃ concentration (mM) in superficial aquifer Fig. 2 NO₂ concentration (mM) in one well with time # Materials & methods #### General - Crops grown in plastic greenhouses in Almería - Management consistent with local practice - Complete nutrient solutions (10-14 mM NO₃⁻, 1.0-1.5 mM NH₄⁺) in most irrigations - Drainage collected daily, and analysed for NO₃ and NH₄+ # "Open" hydroponic crops - Drainage collected in trays, each with 2 x 40 L substrate bags, and 6 plants per bag. - 1) Pepper grown in perlite (21 Jul.04 to 6 Jan.05), drainage in two trays - 2) Tomato grown in rockwool (6 Mar. to 6 Jul.05), drainage in four trays #### Cropping sequences in soil - Drainage collected in free-draining, re-packed lysimeters (2 x 4 x 0.7 m deep), two reps. - Irrigation manage. with tensiometers (-15 -35 kPa) after establishment - Clay loam texture - 1) manure (1,200 kg N ha⁻¹) on 10 Jun.03, 40 mm water (30 Jun.03), curtailed pepper (25 Jul. to 22 Aug.03), pepper (27 Sep.03 to 2 Jan.04), 80 mm irrigation to leach salts (9 Jan.04) - chemical disinfection (20&27 Jul.04), curtailed tomato (25 to 30 Aug.04), tomato (27 Sep.04 to 2 Mar.05). Only H₂O applied to 13 Oct.04 ## Results ## Pepper grown in perlite ## Pepper in soil cropping sequence ## Tomato in soil cropping sequence Pepper grown in perlite: 452 kg NO₃-N ha⁻¹ lost in drainage, from 950 kg N applied ha⁻¹ (93% as NO₃-); average NO₃- concentration of 995 mg NO₃- L⁻¹; 201 mm of drainage, from 526 mm of irrigation, *i.e.* 38% drainage fraction **Tomato grown in rockwool**: 162 kg NO₃⁻-N ha⁻¹ lost in drainage, from 555 kg N applied ha⁻¹ (94% as NO₃⁻); average NO₃⁻ concentration of 944 mg NO₃⁻ L⁻¹ 76 mm of drainage from 316 mm of irrigation, *i.e.* 24% drainage fraction **Cropping sequences in soil**:Substancial drainage associated with (a) crop establishment and (b) large soil management irrigations *e.g.* soil (chemical) disinfection and salt leaching Drainage water generally had >6 mM NO₃- (>370 mg NO₃- L⁻¹), even when only water applied **Discussion Point:** Given that this agricultural system is largely responsible for rapidly enriching this region, it will be extremely difficult to introduce "restrictive" crop management practices that effectively reduce the massive NO₃ contamination that is occurring. This has implications for disadvantaged regions where intensive horticultural systems are currently being introduced.